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OPTIMIZATION OF PARAMETRIC CONSTANTS FOR CREEP-RUPTURE

DATA BY MEANS OF LFJkST SQUARES

By S. S. Manson and A. Mendelson

SUMMARY

An objective method utilizing least squares is presented for the

determination of the optimum parametric constants for stress-rupture data.

The method is applied to both isostress and isothermal data for the pa-

rameters proposed by Larson and Miller_ Manson and Haferd, and by Dorn.

Several examples are treated in detail, and it was found that the method

gives good results. It is shown that the values of the constants for the

parameter proposed by Manson and Haferd are not critical as long as T a

and log ta appear in the proper combination. In addition to optimiza-

tion_ the chief utility of the method lies in the fact that it gives the

same results for a given set of data no matter who makes the analysis,

which is not the case for the graphical methods presently employed.

INTRODUCTION

The problem of extrapolating and correlating high-temperature creep-

and stress-rupture data is presently receiving considerable attention.

In particular_ the ability to extrapolate short-time rupture data can

greatly reduce costly experimental programs and also reduce time delays

in choosing a suitable material for a given application.

The most widely used techniques at present for extrapolating stress-

rupture data are the so-called parameter methods. These methods assume

that by plotting the creep-rupture data for a given material in an ap-

propriate parametric form a single master curve results which can then be

used for interpolation and extrapolation purposes. The three best known

parameter methods are those of Larson and Miller (ref. 1)3 Manson and

Haferd (linear parameter) (ref. 2), and Dorn (ref. 3).

The Larson-Miller method assumes that a plot of log rupture time

against the reciprocal of the absolute temperature at a given constant

nominal stress is linear. Furthermore_ it is assumed that all such



constant-nominal-stress lines intersect at _ commonpoint (O,-C) (fig.
l(a)). A plot, therefore, of the stress o against (log t + C)(T + A60)
should produce a single master curve vali& _or all stresses and tempera-
tures as shownin figure l(b). Originally, the constant C was taken
equal to _0; however, it is now generally r_cognized that for best re-
sults it will vary with the material.

The linear parameter method assumesthat a plot of log rupture time
against temperature in degrees Fahrenheit at a given constant nominal
stress is linear and that all such lines converge to a commonpoint
(Ta, log ta) as shownin figure 2(a). The constants Ta and log t a
are determined from the data for a given material in a given condition.

T - Ta
A plot, therefore, of the stress o against log t - log ta should

produce a master curve, as shownin figure 2(b), valid for all stresses
and temperatures.

The Dorn method assumesthat a plot of log rupture time against the
reciprocal of the absolute temperature at 8 given constant nominal stress
is linear and that all such straight lines are parallel with slope D as

2.3D

shownin figure 3(a). A plot, therefore, ¢f the stress against te T+_60
should produce a single master curve valid for all stresses and tempera-
tures (fig. 3(b)).

It is seen from the foregoing discussion that_ in order to make use

of these parameter methods, certain material constants must be determined.

To do this, the general practice has been io plot creep-rupture data for

a given material as shown in figure l(a), _(a), or 3(a), depending on the

selected parameter. The desired constanl;s can then be obtained visually

by appropriate extrapolation. 0nly when data are given in constant-

nominal-stress form, can these plots be oblained directly. In the more

usual case where the data are isothermal_ Eeveral cross plots must first

be made before figures such as l(a), 2(a), and 3(a) can be constructed.

Since creep-rupture data generally have appreciable scatter, it is

apparent that the results of such visual c_oss-plotting will depend upon

the Judgment of the individual analyzing t_e data. Furthermore_ some

experience in the field of material evalualion is necessary in constructing

the various plots.

This report presents an analytical melhod for determining the best

values of the constants for the three parameters discussed. The method

which is based on the standard least-square,s procedure makes use of the

original raw data and requires no judgment on the part of the analyzer.

Moreover, since it is a least-squares proc_,dure, it gives the statistically



most probable values of the desired constants. The method is first pre-
sented for the case of constant-nominal-stress data and then for the more
usual case of isothermal data. Examplesare presented for several mate-
rials for each of the two cases.

It is not the object of this report to discuss the merits of the var-
ious parameters used. This has been discussed at length in references 4
and 5 where it is indicated that in general the linear parameter gives
better agreementwith experiment for extrapolated stress-rupture times
than either the Larson-Miller or Dorn parameters.

ANALYSIS

Constant-Nominal-Stress Data

Larson-Miller parameter. - Consider a set of constant-stress data as

shown in figure l(a). On the basis of the Larson-Miller parameter_ it is

assumed that a set of straight lines intersecting the log t axis at

log t equal to -C can be fitted to these data. The equation of the

straight line passing through the data for the first constant-stress line

can be written as

y(1)= -c + bi_(i)

and for the second isostress line 3

y(2) : -C + b2"_(2)

Thus_ for any isostress line_ say the jth

where

y _ log t

y(J)= -o + bj-JJ)

bj_ slope of jth isostress line

i
4--

T + 460

(la)

(ib)

(ic)

and the superscripts designate the particular constant-stress line under

consideration.



To find the best set of lines fitting the data and intersecting at
the point -C_ the sumof the squares of th_ deviations S of the actual
data points from the lines (the residuals) is minimized. Thus_

nI n2

= - + + C - D2Ti j + .
i= 1 i=l

• +

%

i=l

= minimum (2)

where p is the number of isostress lines and nl_ n2_ and so forth are

the number of data points for each line.

In order to find the values of C an% the bj that will make S

minimum_ S is differentiated with respect to C and the bj_ and the

resulting equations are set equal to zero. This results in

and

-nC + bI
(i) 2) p)

"_i + b 2 • + + bp _" = ,Yi

i= i=! i= i

-AIC + biB I = CI

-A2C + b2B2 = ("2
I I I
I I I
i I I
I I I

,I
-_C + bplBp :--(,p

(3)



where

nj

i=l

n .

J

i=l

n •

cj i
i=l

and n is the total number of data points:

n = nl + n2 + . . + np

Solution of equations (3) for C and bj gives

C _ -

n p

Eyi
i=l j=l

j=l

b. = Co + AjC

j Bj

(5)

By means of equations (5), the best value of the Larson-Miller pa-

rameter C can be directly computed for a given set of constant-stress

data. The best lines intersecting at -C can also be plotted by using

the second of equations (5).

Dorn parameter. To determine the best slope D of a set of paral-

lel constant-stress lines as shown in figure 3(a), a similar procedure

as for the Larson-Miller parameter is used. The equation of any one of



the isostress lines can be written as follo_s:

y(J)_ aj+ _(i) (6)

The expression to be minimized now becomes

nI n2

i=l i=l

]2- a 2 - I)T! 2 + .
l

• +

.P) - a - D_ p) = minimum
P

(7)

I)ifferentiating with respect to the

expression equal to zero give

njaj + AiD = Dj 1

i=i i=i i= i

aj an_ D and setting the resulting

(_)

where

Ai, Bi, and Ci are as defined in equations (4) and

(8a)



7

The solution of equations (8) gives

AjDjCj -

D= j=1 _____

B- "'J
J nj

j=l

D; - DA4
aj = nj

(9)

The Dorn parameter D can, therefore_ be calculated directly from equa-

tions (9).

Linear parameter. - A similar approach as in the preceding can be

used for determining the constants Ta and log ta (fig. 2(a)) for the

linear parameter. The equation for any of the isostress lines is

Y(J) = Ya - bjTa + bj T(j) (lO)

where

Yam log ta

Equation (i0), however, is nonlinear in the unknown constants because

of the term bjT a. Minimizing the sum of the squares of the deviations

would_ therefore_ lead to a set of nonlinear algebraic equations which

would be very difficult to solve. To avoid this difficulty_ two alternate

approaches have been used. In the first approach, a value is assumed for

Ta. Equation (I0) is then written as follows:

y(J) = ya + bj[T(J) - Ta] (10a)

Equation (lOa) has exactly the same form as equations (i) and the

solution is, therefore, given by equations (5) with C replaced by -Ya

and • replaced by T - T a. Once the best values of Ya and bj are

found for the assumed value of Ta_ the sum S is computed by equation

(2) (again replacing C by -Ya and T by T - Ta). A new value of
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Ta is chosen_ and the calculation is repea_ed giving a new value of S.
The value of Ta for which S is a minimumis the correct value. Since
the results for the linear parameter are generally insensitive to the
exact value of Ta as long as the corresponding value of Ya is used_
the previous trial-and-error procedure need: in general_ be carried out
only a few times in order to obtain a satisfactory value for Ta.

An alternate simpler approximate method[which does not involve trial
and error can also be used. In this method: the nonlinear term bjT a is
temporarily grouped with Ya' and equation (i0) is written as follows:

y(J) _ dj + bier(J) (i1)

where

dj _ Ya - bjTa

Equation (ii) is now linear in the unknown constants, dj and bj_ and

these can be found by least squares as befo:'e. Thus_ the sum S to be

minimized now becomes

nI n2

i=l i=l

- d 2 - b2T_2)]2 + . • 4.

np

- - = minimum (12)

i=l

Differentiating with respect to the dj anl bj leads to

njdj + Ajbj = Dj

Ajdj + Bjbj = Cj

(13)

where Aj, Bj, Cj, and Dj are as previousLy defined and

_i- Ti



Solving equations (15) gives

B_D_ - AjCj
dj =

njBj - A_

(14)

Since the best values for dj and bj have been determined from equa-

tions (l_)j the best values of Ta and Ya can now be found as follows:

dj = Ya - bjTa

and it is desired to find the best values for Ya and Ta. The following

sum is_ therefore_ minimized:

P

(dj - Ya + bjTa )2 = minimum (15)

j=l

which gives

j=l j=l t _ (16)

P )2 P I
j=l j=l j=l J

Therefore_

T a ---

P P P

p bj- b

j=l j=l

P P

dj + T a _ bj

Ya = j--i j=l
P

(17)
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Thus, T a and Ya are directly computed f_om equations (l&) and (17).

It will be shown later that the values of Ta and Ya obtained using

equations (14) and (17) differ very little from the values obtained by

the trial-and-error method previously described. This procedure is more

fully discussed in the appendix.

Isothermal Dala

It has been the general practice to perform stress-rupture tests at

constant temperature and to represent these data as shown in figure 4.

For this case a least-squares method to obtain the parametric constants_

similar to the one previously described_ can be used. To do this_ the

master curves shown in figures l(b), 2(b), and 3(b) will be presented in

the following form:

Larson-Miller parameter:

(y + C)(T + 46O) = ao+ alx+ az_:z + •

Linear parameter:

Y - Ya =
T - Ta a0 + alx + a2x2 +

Dorn parameter:

D = ao + alx + agx_l + .
Y - T + 460

+ amxm

• +amxm

• +am xm

(18)

where x _ log _ m is the degree of the ])olynomial assumed_ and y has

previously been defined• Note that the co(_fficients ai do not, of

course, have the same values in the three _quations (18).

In equations (18), the master curves _re represented by polynomials

in log _. In general, a parabola or cubi_: will describe the master

curve with sufficient accuracy except for _hose materials whose master

curve has a reversal in curvature near the tail end at low stresses.

Generally, it is desirable to assume a parabola or a cubic first to deter-

mine the constants as described herein. T]Le master curve should then be

plotted using these constants. If it appe_irs that a reversal in curvature

is present at low stresses, the calculatio_ should be repeated omitting

these data. Omission of these data should not affect the true value of

the parametric constants since these are d_terminable from any segment

of the master curve. It might be expected that increasing the degree of
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the polynomial will improve the values of the constants. However_it will
be shownthat polynomials higher than the third degree are generally
unnecessary.

The least-squares method will now be applied to equations (18). The
quantity that will be minimized is the sumof the squares of the differ-
ences between the logarithm of the actual rupture times and the theoreti-
cal rupture times_ since the rupture time is generally the critical
variable•

Larson-Miller parameter.

as follows:

The first of equations (18) is written

y : -C + ao_ + alTx + aZ_x2 + • + am_xm (19)

where T = 1/(T + _60).

The sum of the squares of the residuals is

n

S = E (Yi + C- ao_ i - alTiX i - az_ix _ - - aTn_xm)2 (20)

i:l

Minimizing the sum of the squares of the residuals as previously done

leads to the following set of equations for C and the aj:

-nC + E0a 0 + Ela I +

n

• +_m_m= _ Yi
i=l

-EoC + F0a 0 + Fla I + + Fma m = GO

-EIC + Fla 0 + F2a I + . . . + Fm+lam = G I

I , j l l
;

/ / I I I
I II / I

-_c + Fma 0 + lal + . . . + F_a_ = Gm

(21)
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where

n

i=l

n

Fj _ 2 j= "[ixi

i=l

jGj = YiTixi

i--i

The solution of equations (21) gives the optimum value of C as well as

the aj for an assumed degree polynomial for the master curve.

A word of caution is needed with rega_'d to the solution of equations

(21). These may in many cases be somewhat ill-conditioned, that is, a

large number of significant figures may be lost during the process of

solution. Thus_ care must be exercised t_t enough significant figures

be carried in the calculation to ensure me_mingful answers. The situation

is more aggravated the higher the degree of the polynomial assumed for

the master curve. However_ as will be sho_m_ it generally would not be

necessary to assume more than a cubic for -_he master curve. Note that

the number of equations to be solved is e_al to the degree of the poly-
nomial assumed plus two.

Linear parameter. - The second of equ_.tions (18) is written as
follows:

Y = Ya + (T - Ta)a 0 + (T- Ta)alx + (T - T )a2x2 + . . . + (T - Ta)am xm

(23)

Equation (23) is of the same form as equation (19) with -C replaced by

Ya and • replaced by T - T a. The so!uJion_ thereforej is given by

equations (21) and (22) provided T a is krown. A trial-and-error pro-

cedure is thus followed as described for t_e constant-stress data. Values

are chosen for Ta, and for each value equations (21) and (22) are solved

and S is computed from equation (20) (by replacing C by -Ya and

by T - Ta). The value of Ta for which 8 is a minimum is the

correct value.
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Dorn parameter. - The last of equations (18) is written as follows:

y = D_ + a0 + alx + a2x2 +

where • : 1/(T + 460).

• + %_ (2_)

Minimizing the sum of the squares of the residuals leads to the following
equations:

na 0 + E0D + Hla I + H2a 2 + .

E0a 0 + F0D + Ela I + E2a 2 +

Hla 0 + EID + H2a I + Hsa 2 + .

H2a 0 + E2D + H3a I + _4a2 + .

I I I 1

%_ao + _D + Hm+laI + Em+zaz +

n

• +Rmam= _ Yi
i=l

• + Era% = ao

• + Em+la m = I1

• + _+2am : T2

• + H2mam = Im

(2s)

where Ej and G O have previously been defined and

n

i=l

n

i=l

(26)

The solution of equations (25) gives the best values of D and the

aj for a given degree polynomial for the master curve•

EXAMPLES

Constant-Nominal-Stress Data

Consider a set of constant-stress data as given in table I and taken

from a tabulation of the data in reference 4. It is seen from the table

that

nI = 93 n 2 = 9_ n3 = 9_ n 4 = 8_ n = 35
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I (eqs. (4)) gives
Letting _i - Ti + 460

AI = 5.1709xi0 -5

A2 = 5.2997×10 -5

A S = 5.5102xi0 -5

A 4 = 5.5898xi0 -5

B I = 2.9758xi0 -6

B 2 = 5.1SllxlO -6

B 5 = 5.5793xi0 -6

B4 = 5.6558×10 -6

and

CI == 8.0785xi0 -5

C2 = 5.6297xi0 -5

C5 : 4.5022xi0 -5

C4 = 5.5599xi0 -5

55

E Yi = DI + D2 + D3 + I4 = 36.861

i=l

Then, from equations (5)

C= 25.8

DI : 15.748

D2 = 8.8652

D 5 = 6.6545

D 4 = 7.6150

AI = 7j049.99

A 2 = 6_694.99

A S = 6,084.98

A4 = 4,209.98

B I : 5.56625xi06

B 2 : 5.06842xi06

BZ = 4.15518xi06

B4 = 2.25945xi06

CI = 10.2SllxlO 3

C2 = 5.39997xi05

CZ = 5.84065xi0 S

C4 = 3.48507×105

bI = 44_146 b 2 = 42_154 b 5 = 4C,151 bA = 56_819

The best value of C in this case is therefore 25.8.

By using equations (9)_ the Dorn parameter is calculated as

D = 41_470

To calculate the constants for the linear parameter by the trial-

and-error method described_ values must be a_sumed for Ta. If it is

not known at all what region T a might be i_3 a rough plot could be made

to determine a first guess for T a. Thus_ a_suming Ta = 500 and, in

this case, defining x = T - T a (eqs. (4)) give



15

and, as before,

55

_ 36.8608Yi

i=l

Therefore, from equations (5), by letting Ya
there is obtained

Ya = ii. 4

bI = -0.001266 b 2 = -0.001405

Then, from equation (2),

Now, by assuming a value of

peated giving

and, for Ta = 700,

take the place of -C,

b 5 = -0.001583 b4 = -0.001996

S = 0.6707

Ta equal to 600_ the computations are re-

Ya _ 9.896

8 = 0.5819

Ya = 8.506

S = 0.5889

These calculations indicate a minimum value for S at Ta = 600. If

greater accuracy is desired, a few more points can be taken in this

vicinity. Thus, it turns out that the true minimum is approximately at

T a = 650

ya = 9.108

S = 0.5640

However, as will be shown late_ using values of T a = 600, Ya = 9.9 or

T a = 700_ Ya = 8.5 will not affec_c the stress-rupture results appreciably.
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This trlal-and-error procedure can be completely avoided if the

approximate method described for the linear parameter is used. Thus, by
defining • _ T, equations (4) give

AI = Ii,550 BI = 14"866xi06 CI = 17,105 DI = 15.748

A 2 = i1,195 B2 = 14"013xi06 C2 _ 9_852.6 D2 = 8.8652

A 5 = 10,585 BZ = 12'¢90×i06 CZ = 7,157.8 D5 = 6.6345

A4 = 8,210 B4 = 8"4494xi06 C4 = 7,289.6 D4 = 7.6150

and from equations (14),

dI = 17.4 bI = -C.0124

d2 = 17.9 b 2 = -(.0156

d3 = 19.5 b5 = -C.0158

d4 = 25.4 b4 " -(.0219

Substituting into equations (17) gives

T = 645
a

Ya = 9.5

In this case the trial-and-error procedure _s not really necessary as

good results can be obtained by using equations (14) and (17) to get T a
and Ya"

Isothermal Date

Consider the isothermal data of figure 4 tabulated in table If. To
1

calculate the best parameter C, let _ m Tj + 460 and assume a third-

degree polynomial (m = 3) for the master curve. Then computing the Ej,

Fj, and Gj by equations (22) and substituting into equations (21), with
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m= 3, give the following five equations:

-32C + 0.017015000 a 0 + 0.067155551 aI + 0.26671741 a 2 +

1.0666659 a5 = 62.095000

-0.017013000 C + 9.1227245×10 -6 a0 + 36.213995xi0 -6 aI +

I&A.71015×IO -6 a2 + 582.01515xi0 -6 a5 = 0.0331957¢4

-0.067155551 C + 36.215995xi0 -6 a0 + l&4.71O13XlO -6 aI +

582.01515xi0 -6 a 2 + 2355.6764xi0 -6 a5 = 0.12753108

-0.26671714 C + 144.71015xi0 -6 a0 + 582.01515xi0 -6 aI +

2355.676_xI0 -6 a 2 + 9595.2956xi0 -6 a5 = 0.49259087

-1.0666639 C + 582.01515xi0 -6 a0 + 2555.6764×10 -6 aI +

9595.2956×10 -6 a2 + 0.059501429 a5 = 1.9127579

The solution of these equations gives

C = 15.5

a0 = 182;925 aI = -92.231.9 a 2 = 20,40_.8 a3 = -1,697.05

To calculate the linear parameter constants Ta_ Ya' let _i = Ti - Ta

and replace C by -Ya" For an assumed value of Ta, Ej, Fj, and Gj

are computed as before from equations (22). Thus, with m : 5 and

T a = O, equations (21) become

52y a + 46,000 a 0 + 178,9¢5.27 a 1 + 700,9_8.A5 a 2 + 2_764,570._ a 5 = 62.095

&6_O00 Ya + 67"16x106 ao + 259"11478x106 al + 1006"6607×106 a2 +

5957.9581x106 a 5 = 88_481

178_9_5.27 Ya + 259"ll&78x106 ao + 1006"6607x106 al + 5957"9581x106 a2 +

15j510.A67×lO 6 a5 = 525,601.61
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700,948.43 Ya + 1006"6607×106 ao + 3957"gz_ix106 al + 15'510"467xi06 a2 +

61,505.824xi06 a5 = 1,280,135.8

2_764,570.3 Ya + 3937"9381×106 a0 + 15'510"467xi06 al + 61'505"824xi06 a2 +

245,526.25 a5 = 4,9]0,487.4

The solution of these equations gives a va]ue of Ya = 15.0. The value

of S obtained from equation (20) is 0.4731. Choosing a value of Ta

equal to i00 and repeating the previous calculations result in a value of

Ya = 14.1 and S = 0.4801. A minimum value of S = 0.4671 is obtained

for Ta = -500 with a corresponding Ya = 17.7. A plot of S against

Ta and the corresponding values of Ya is shown in figure 5. It is seen

that S does not change much with Ta _n the range of 0 to -500. It

would, therefore, not make much difference which value of T a in this

range is used as long as the corresponding value of Ya is used with it.

For other materials, the curve of S plotted against Ta might have a

sharper minimum, and the value of Ta would be more critical.

For the Dorn parameter, Ej and G O are computed as for the Larson-

Millerl parameter, and\ Hj and Ij are computed using equations (26)

_with T = +1466). Then, for m = 5, the following equations arei T i

obtained:

52a 0 + 0.017015000 D + 125.50874 _i + 495.64505 a 2 +

1970.5815 a5 = 62.095000

0.017015000 a0 + 0.0000091227245 D + 0.037135551 aI + 0.26671741 a 2 +

1.0666659 a 5 = 0.053L95744

125.50874 a0 + 0.067155551 D + 495.64505 aI + 1970.5815 a 2 +

7886. 7697 a3 = 257._6461
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495.66303 a0 + 0._6671741D + 1970.5813 aI + 7886.7696 a2 +

51_770.600 a3 = 911.60106

1970.5815 a0 + 1.0666659 D + 7886.7697 aI + 31_770.A00a2 +

t28_795.83 a3 = 5521.6275

Solving these equations gives

D = 32_900

RESULTS AND DISCUSSION

Determination of Master Curves

In order to determine how well the various parameters are determined

by the least-squares method presented_ master curves for the linear pa-

rameter were computed for the examples described. These master curves

are plotted for the constant-stress data of the 17-22A(S) steel and the

isothermal data of the 18-8 stainless in figures 6 and 7_ respectively.

These curves were then used to replot the constant-stress lines for the

17-22A(S) and the isothermal curves for the 18-8 stainless. The results

in figures 8 and 9 show that the agreement between experimental data and

the computed lines is good.

Effect of Polynomial Approximation

As a further check on the assumption that the master curves can be

represented by polynomials as given in equations (!8)_ the parameters for

the constant-stress data of the 17-22A(S) were recomputed using a poly-

nomial representation for the master curve. Thus; equations (21) were

solved for the linear parameters assuming polynomials of the third degree

and also of the fifth degree for the master curves. The values obtained

for both the third-degree and the fifth-degree polynomials were 23.8 for

C, 650 for Ta3 and 9.1 for log ta. These values are seen to be the

same as previously obtained using the constant-stress data directly to

find the best intersection of the straight lines.

As a further illustration 3 the data for 25-20 steel given in refer-

ence 2 were considered. The parameters for this material were obtained
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using second-, third-, fourth-_ and fifth-_egree polynomials. The fol-
lowing results are obtained:

m = 2, C= 14.43 Ta : -4003 log t a = 17.3

m= 5, C = 14.2, Ta = -200, log t a = 15.5

m = 4, C = 14.4, Ta = -2003 log ta = 15.3

m = 53 C -- 14.63 T a = -200_ log ta = 15.6

It is seen that the same results were obtained for all the polynomials

except for the polynomial of second degree _hich gave slightly different

values for the linear parameter constants. However, there is very little

difference in the sum of the squares of the deviations in going from

T a = -200 to T a = -400 so that even using a value of m = 2 would

give good results in this case.

Insensitivity of Results to P _rameter Values

As a further illustration of the relative insensitivity of creep-

rupture-data correlation to the precise val_es of the linear parameter

constants (as long as Ta and log ta appear in the proper combination),

the data for Nimonic 80A as given in table fill were analyzed. These data

were taken from reference 5 where the param,_tric constants are given as

16.9 for C 3 660 ° F for Ta3 and 9.65 for i.og ta. In a private communi-

cation to the authors of the present paper _ther investigators questioned

the values given in reference 5 stating tha*; their analysis using the same

data gave values of Ta = i00 ° F, log ta = 16.

An analysis was therefore made of thes_ data using the least-squares

method presented herein. The results are slown in figures i0 and ii.

Figure !0 shows that the best values for th_ parameters are Ta = 400 ° F3

log ta = 12.2. However, because the curve Js flat in the region of its

minimum (it is drawn here to a very expande_ scale in order to show the

precise minimum), other combinations of conEtants show sums of deviations

not much higher _han those at the minimum. Thusj the sum of the squares

of the deviations S for the minimum point is in the neighborhood of

5.5×10 -2 , the value for the constants of relerence 5 is approximately

6×I0-2_ and for the constants of the privat6 communication it is approxi-

mately 5.7xi0 -2. Thus_ all three combinations are for all practical pur-

poses equally good. This is further illustrated in figure ii where the
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reconstructed isothermals for each of the three combinations are compared
to the experimental data. All the computedvalues lie on the samesolid
limes. It should be noted that all three combinations lie on the
straight-line plot of log ta against Ta of figure i0.

This illustration showsgraphically how different investigators
analyzing the samedata can arrive at different values of the constants
in the linear parameter unless an objective method such as the least-
squares method presented herein is used. It also shows_however3 that
the degree of correlation of the data is rather insensitive to the pre-
cise values of the parameters as long as the proper value of log t a is
used with Ta. This insensitivity of the correlation to the precise values
of the constants is due to the fact that the intersection point of the
constant-stress lines is generally remote from the actual data points.
Therefore_ moving the intersection point along an average line through
all the data would not appreciably change the individual lines. It has
been the experience of the authors that this is true for most materials.

CONCLUSIONS

An objective least-squares method has been presented for determining
the optimum values of creep-rupture parametric constants for the Larson-
Miller, linear, and Dorn parameters. From the examples shownit is con-
cluded that the results obtained are insensitive to the degree of poly-
nomial assumedfor the master curve and that for the linear parameter the
actual values of Ta and log ta are not critical as long as they appear
in the proper combination. Furthermore3 the method permits a person with
no experience in the field of materials to obtain the correct values of
the parametric constants from tabular data.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland_ Ohio, December12, 1958



22

APPENDIX- APPROXIMATEMETHODFORCONSTANT-STRESSDATA

Consider a set of constant-stress data as shownin figure 8. The
trial-and-error method for obtaining the best intersection point for these
lines utilizes the least-squares procedure by minimizing simultaneously
the squares of the deviation of all the data points from the lines. By
this method each point is given the sameweight.

The approximate method described in the body of this report first
treats each set of constant-stress data separately and finds the best
fitting straight line for the set. Now, if the set of straight lines
thus determined is to intersect at a commonpoint, a plot of slope against
intercept for these lines should be a straight line as can be seen from
equations (ii) where bj is the slope of the jth line and dj is the
intercept. The so-called "best average" in±ersection point is therefore
found by fitting the best straight line to the plot of dj against bj.

It is to be noted that by this approximate procedure each constant-
stress line is given the sameweight withou_ regard to the number of data
points associated with that stress. If the data are such that one or more
of the lines is ill defined then it maybe desirable to employ some
weighting procedure whenusing the approximste method.
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TABLEI. - STRESS-RUPTUREDATAFOR

17-2 (s) 4)

i0,000

20,000

T

1370

1370

1550

1515

1270

1270

1235

1210

!1160

1400

1575

1320

1270

1250

1190

1170

1140

ii00

t

2.8 40,000
5.7

4.5

12.5

48.5

51.5

129.8

228.7

1301

0. i 80,000
.12

1.0

5.9

15.5

48.0

102.7

242.1

987

T t

1285

1260

1210

1210

i175

i150

i120

ii00

1075

1140

i070

1045

I050

i000

985

970

970

0.075

.57

1.35

1.90

6.60

13.6

39.5

83.0

205.7

0.055

1.5

2.5

5.7

15

82

109.2

433
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TABLEII. - 18-8 STAINLESSSTEEL(REF. 2)

Tempera- log t _ log G Teml a- log t a
ture, T tur( T

1200 0 58.OxlO5
.575 52.0

1.04 !28.0
2.48 18.0
3. O0 14.0
3.49 Ii.5

1500 0,55 22.0×105 i

i .16 18.5

2.28 12.5

2.79 i0.0

3.50 8.0

5.90 6.0

1400 0.40 18.0xi03

•81 14.6

2.86 7.0

3.08 6.0

3.52 5.0

1500 0.66 11.0×105

.77 9.4

1.41 8.0

2.12 6.0

2.45 5.0

5.02 4.0

4.579784

4.505150

4.447158

4.255272

4.146128

4. 060698

4.342423

4.267172

4.096910

4.0

5. 903090

3.778151

4.255272

4.164353

3. 845098

3. 778151

3.698970

4. 04395

5.973128

S .903090

5. 778151

5.698970

5.602060

log

160( 0.55 9.0xlO 3 5.95424

.90 8.0 5.90509

16

2.59 4.0 5.60206

2.66 5.5 3.544068

5.00 3.0 3.477121

5.26 2.76 5.440909

!0.08 5.0×105 5.69897

.91 5.55 3.55022

2.68 1.65 5.217484
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TABLEIII. - RUPTUREDATAFROMNIMONIC80A

(FROM REF. 5)

650 ° C

Stress,

tons/sq in.

5O

28

26

24

22

20

18

16

ILife, hr

274
481

898

1,292

2,655

5,270

83171

15,586

700 ° C

Stress3

tons/sq in.

25

21

19

16

15

i0

7

!Life, hr

208

445

685

1,735

4_836

10,896

543055

750 ° C

Stress,

tons/sq in.

17

16

14

12

I0

8

6

4

Life, hr

158

250

419

852

1,857

43450

153089

22,657
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stress plots.
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Figure 2. - Linear

parameter me;hod for

extrapolatiol (ref.

_).

o

i

T + ¢60

(a) Constant-nominal-

stress plots.

(b) Master curve.

Figure 3. Dorn param-

eter method for ex-

trapolation (ref. 3).
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log ta
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log a
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Figure 6. - Master curve for 17-22A(S).
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log t i

, I

X o_ _a_e_t_

\ k ,\

_ _< X Stress,X ,\

\ \
X 20 _000

60_000

80 _ 000 I
-B I I

900 1000 1100 1200 1300 1600 1SO0

Temperature_ OF

Figure 8. - Comparison of computed isostress lines with experimental data

for 17-22A(S).
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log J
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Figure 9. - Comparison of calculated isothermals with ex-

perimental data for 18-8 stainless.
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Experimenta_

rTheoretical_y computed:

I Ta = 400 ° F_ log ta = 12.2 -

Ta = i00 ° F_ log ta = IS.2

Ta = 650 ° F 3 log ta = 9.7
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Figure ii. - Isothermal curve'; for Nimonic 80A.
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